COMMUN. MATH. SCI. (© 2007 International Press
Vol. 5, No. 2, pp. 383-389

AN EFFICIENT MODULO P MULTIPLICATION ALGORITHM
WITH MODERATE FACTORS OF P+1 AND P—1*

REN-JUNN HWANG', FENG-FU SU%, AND SHENG-HUA SHIAUS

Abstract. Modular multiplication plays an important role to several public-key cryptosystems
such as the RSA cryptosystem. This paper proposes an efficient modulo p multiplication algorithm
with moderate factors of p4+1 and p—1. In order to improve the RSA decryption performance, users
can utilize our proposed algorithm and the strong prime criterion. It will prove that the decryption
method based on our proposed algorithm can run at a speed almost 6.5 times faster than that of
the traditional method, or almost 2 times faster than that of the method based on the Chinese
Remainder Theorem. Furthermore, the proposed algorithm can greatly enhance the performance of
RSA encryption.

Key words. modular multiplication, modular exponentiation, RSA cryptosystem, strong prime

AMS subject classifications. 65Y20, 68Q99

1. Introduction

Modular multiplication is fundamental to several public-key cryptosystems such
as the RSA cryptosystem [1]. The RSA cryptosystem uses modular exponentiation
performed by modular multiplication repeated enough times to ensure security. This
is computationally expensive. So we need efficient modular multiplication for a large
modulus.

Hayashi [2] proposed a new modular multiplication method to reduce the com-
putational time of RSA. In his method, the modular exponentiation with modulus
n transforms into two substitute operations with moduli n+1 and n+2. If moduli
n+1 and n+2 are factored, the user can then apply the Chinese Remainder Theo-
rem(CRT) modulo n+1 and n+2, respectively. Hayashi’s formula can generate the
final result, but his method is not practical; as n+1 and n+2 grow larger and larger,
it becomes expensive to factorize n+1 and n+2.

In this paper, we propose an efficient modulo p multiplication algorithm with
moderate factors of p+1 and p—1 inspired by Hayashi’s method [2]. The proposed
algorithm transforms a modular operation with the modulus p into two substitute
operations with decomposable moduli p+1 and p—1. The idea is that fast CRT
evaluation may work for moduli p+1 and p—1, even if it does not work for modulus
p. The algorithm can greatly enhance the performance of RSA decryption and reduce
the computational time of RSA encryption. Based on the strong prime [3, 4, 5, 6, 7, §]
of RSA criterion, users can employ the proposed algorithm to enhance the performance
of RSA decryption.

The rest of this article is organized as follows: section 2 introduces our efficient
modular multiplication algorithm; section 3 introduces the application to the RSA
cryptosystem; section 4 analyzes the computational complexity before we make a
conclusion in section 5.

*Received: December 12, 2006; accepted: April 2, 2007. Communicated by Anna Gilbert.

TDepartment of Computer Science and Information Engineering, TamKang University, Tamsui,
Taipei 251, Taiwan (victor@mail.tku.edu.tw).

tDepartment of Computer Science and Information Engineering, TamKang University, Tamsui,
Taipei 251, Taiwan (fengfusue@yahoo.com.tw).

$Department of Computer Science and Information Engineering, TamKang University, Tamsui,
Taipei 251, Taiwan (891190067@s91.tku.edu.tw).

383

384 AN EFFICIENT MODULO p MULTIPLICATION ALGORITHM

2. An efficient modular multiplication algorithm

In this section, we present an efficient modulo p multiplication algorithm with
moderate factors of p+1 and p—1. Let a, b, and p be three n-bit positive binary
integers where a,b<p and ged(2,p) = 1. Assume p—1 and p+1 can be decomposed
into products of mutually prime factors, that is to say, p—1=wu; X ua X ... X u¢, where
ged(ui,uj) =1 for 1<i<j<f,and p+1=wv; Xvg X ... X vg, where ged(v;,v;) = 1 for
1<i<j<g. The modular multiplication algorithm is the following algorithm.
An efficient modular multiplication algorithm
Input: a,b,p,(u1,us,...,us),(v1,v2,...,04)
Output: s=axb mod p
Step 1. Compute D= (p*>—1)/2.
Step 2. Compute M =a xb.
Step 3. If M > D, then z=1, else 2=0.
Step 4. Compute K; =M mod u;, j=1,..., f.
Step 5. Employ the CRT to compute Y7.
Step 6. Compute Jy =M mod v, k=1,...,g.
Step 7. Employ the CRT to compute Ys.
Step 8. Compute s=2"1(Y; + Y5 —2') mod p where 2’ =z if Y; > Y5; otherwise 2’ =

z+1.

Step 9. Return (s)

The following Theorem demonstrates that the result of “a x b mod p” can be gen-
erated from “(axb) mod (p—1)” and “(axb) mod (p+1)”. The proposed algorithm
generates the correct result of “a xb mod p” at Step 8.

THEOREM 2.1. Given Y1 =W mod (p—1), Yo=W mod (p+1), such that 0<W <
p?—1 and ged(2,p) =1, then s=W modp =271 (Y1 + Yo — [W > (p? —1)/2] — [Y1 < Y3])
mod p. Here we use Knuth’s bracket notation [9]: for a Boolean-valued expression B,
[B] is 0 if B is false and 1 if B is true.

Proof. Since 0<W <p?—1, we may write W =r-p+s, where 0<r<p—1 and
0<s<p—1.
If s+r<p—1, write W=r(p—1)+(s+7),s0 Y1=W mod (p—1)=s+r.
Otherwise, if s+r>p, write W=(r+1)(p—1)+(s+r—p+1),s0 Y1 =s+r—p+1.
Similarly, if s—r >0, write W=r(p+1)+(s—r), so Yo=W mod (p+1)=s—1r;
otherwise, if s —r < —1, write W= (r—1)(p+1)+(s—r+p+1),s0 Yo=s—r+p+1.
Thus, there are four cases to consider in computing Y7 4+ Y5.

Case 1: Y1 +Ys=s+r+s—r=2s.
Then s=2"1(Y; +Y2) mod p.
Since s +r<p—1 and s—r >0, we obtain W < (p?>—1)/2 and Y; > Y>.

Case 2: Y1+Yo=s+r+s—r+p+1=2s+p+1.

Then s=2"1(Y; +Y>—1) mod p.

Since s+r<p—1and s—r<—1, we obtain W < (p?>—1)/2 and Y; < Y.
Case 3: V1+Yo=s+r—p+14+s—r=2s—p+1.

Then s=2"1(Y; +Y>—1) mod p.

Since s+r>p and s—r >0, we obtain W > (p?—1)/2 and Y; > Y>.
Case 4: V1+Yo=s+r—p+1l4+s—r+p+1=2s+2.

Then s =271(Y; +Y>—2) mod p.

Since s+r>p and s—r < —1, we obtain W > (p?—1)/2 and Y; < Y.

REN-JUNN HWANG, FENG-FU SU AND SHENG-HUA SHIAU 385

Thus, s=2"1(Y; + Y2 — [W > (p? —1)/2] — [Y1 < Y2]) mod p, where for a Boolean-
valued expression B, [B] is 0 if B is false and 1 if B is true. d

In the modular multiplication computation, the remainder with modulus p can
be derived from both the remainder with p—1 and the remainder with p+1 by the
previous theorem. If p—1 and p+1 can be decomposed into products of mutually
prime factors then a computation with numbers of smaller scale must be faster. The
computations of the remainder with modulus p—1 and the remainder with modulus
p+1 consist of several independent parts, so that these computations can also be
performed in parallel. Additionally, 2% (p+1)/2=p+1=1 mod p, so (p+1)/2 is the
multiplicative inverse of 2 modulo p. Therefore, the inverse value of Step 8 can be
computed efficiently. It is clear that the proposed modular multiplication algorithm
is more efficient than direct modular multiplication.

3. Application

The key point of RSA cryptosystem performance lies in its modular exponen-
tiation. Efficient evaluation of modular exponentiation to the power e uses the
square-and-multiply exponentiation method determined by the binary representation
elk]...e[1]e[0] of e (each e[i] is either 0 or 1) [10]:

RSA(n,m,e)

result =1;
for i=k down to 0 do

result = (result X result) mod n;

if e[k] then result = (result x m) mod n;
return result.

Our proposed algorithm can be used to improve the performance of computing
(result x result) mod n and (result x m) mod n, both of which can be derived from
both the remainder with modulus n—1 and the remainder with modulus n+1. In
general, a computation with numbers of smaller scale must be faster. The compu-
tations of the remainder with modulus n—1 and the remainder with modulus n+1
consist of several independent parts, so that these computations can also be performed
in parallel. Clearly, we can perform the encryption of RSA more efficiently using the
proposed algorithm.

In addition to reducing the computational time of RSA encryption, the proposed
algorithm can greatly enhance the performance of RSA decryption. The security of
RSA depends critically on the problem of factorizing n into its prime factors p and q.
A recommended way of maximizing the difficulty of factorizing n is to choose p and
q as strong primes [3, 7, 8, 11]. The ANSI X9.31 standard [3] defines a prime p to be
strong if p satisfies the following conditions:

1. p—1should contain a large prime factor uy such that p—1=1wu; X ua X ... X uy,
where ged(u;,uj)=1for 1<i<j<f.

2. p+1 should contain a large prime factor vg such that p+1=v; xv2 X... X vy,
where ged(v;,v;) =1 for 1<i<j<g.

The “level-2 prime” numbers uy and v, can easily be found by a probabilistic
primality test. These methods use the “level-2 primes” uy and v, to find the “level-1
prime” p. Another prime g can also be generated by using the same method and the
“level-2 primes” wy, and x;.

Based on the strong prime criterion, our proposed algorithm can apply to RSA
decryption. The structures of strong primes p and ¢ are clear to the secret key holder.
We first take advantage of the square-and-multiply exponentiation method and use

386 AN EFFICIENT MODULO p MULTIPLICATION ALGORITHM

the level-2 prime factors as modulus, then construct level-1 modular exponentiation,
and finally employ the CRT to compute the result of ¢? mod n.

4. Computational complexity

This section demonstrates that the decryption method of utilizing our proposed
modular multiplication algorithm is more efficient than both the traditional decryp-
tion method and the method based on the CRT. First, we have to define some nota-
tions as follows:

e MODg(y,z) denotes the computational complexity of modular exponentia-
tion (¥ mod z).

e M(w),A(w) and Mod(w) denote the computational complexities of multipli-
cation, addition, and modulus, which are associated with the bit length of
operand w.

e [(w) denotes the bit length of w.

e S denotes the computational complexity of shift operator.

By the addition chain method [9], the modulo operation ¢? mod n can be expressed
as:

MODg(d,n)=1.5x1(d)[M(l(n))+2Mod(l(n)) +1]. (4.1)
The multiplication and addition operations can be expressed as follows [12]:

M (w) =3M(w/2) +5A(w) + 28, (4.2)

A(w) =w/32. (4.3)

Also, the modular operation can be conveyed by the following equations based on
the divide and conquer concept [13]:

Mod(w) = Mod(w/2)+4M (w/2) +1.5A(w) +3S. (4.4)

Without losing its generality, we assume that all of Mod(32),M (32),A(32) and S
take one clock cycle. By Equations 4.2 and 4.3, we obtain

M (1024) =3M (512) +5A(1024) +25
=3M(512)+162
= 3[3M(256) +5A(512) + 2] + 162
—=9M (256) +408
—9[3M (128) +5A(256) +25] +408
=27M(128)+ 786
=27[3M (64) +5A(128) +25] + 786
=81M(64)+ 1380
=81[3M(32) +5A(64) +25] + 1380
=243M (32) + 2352
=2595.

REN-JUNN HWANG, FENG-FU SU AND SHENG-HUA SHIAU 387

TABLE 4.1. Numbers of CPU clock cycles for realizing the RSA decryptions based on three
different methods

Traditional method | CRT method | Our method
Estimation 18293760 5434328 2821635
Simulation 107578368 35201744 19781840

By Equations 4.2, 4.3 and 4.4, we obtain

Mod(1024) = Mod(512) +4M (512) + 1.5A(1024) + 35
— [Mod(256) +4M (256) +1.5A(512) 4 35] + 3295
— [Mod(128) +4M (128) + 1.5A(256) + 35] + 4294
)

=[Mod(
— [Mod(64) +4M (64) +1.5A(128) + 3] + 4577
— [Mod(32) +4M (32) + 1.5A(64) +35] + 4646

=4657.

In order to ensure data security, the bit length of modulus should be 1024 at
least. By Equation 4.1, the traditional decryption method can be represented as
MODg(d,n)=1.5x1024[M (1024) +2Mod(1024) +1]. In other words, the traditional
decryption method should take 18293760 clock cycles.

If the decryption method based on the CRT and the bit lengths of p and ¢ are the
same, the operation of the decryption method can be conveyed as 2MODg(d,,p) +
3A(512)+2M (512)+ Mod(512). Thus, the decryption method takes 5434328 clock
cycles.

Without losing its generality, we assume that the bit length of the level-2 large
prime factor is about [(n)/4, such as: uyf,vg,...[3, 4, 5, 6, 7]. The decryption method
of utilizing our proposed algorithm consists of several independent parts, so that
these computations can be performed in parallel. The total time needed to operate
the proposed method is
MODg(dp,u1)+3l(n)/4[3A(256) +2M (256) + Mod(256)] + [A(512) + Mod(512)] +
3A(512)+2M (512) + Mod(512). It takes 2821635 clock cycles.

The traditional decryption method takes 18293760 clock cycles, while the decryp-
tion method based on the CRT takes 5434328 clock cycles. Significantly, the method
utilizing our proposed algorithm takes only 2821635 clock cycles. The results are
listed in Table 4.1.

In order to evaluate the performance of our method, we examine the methods
mentioned above with the Texas Instruments TMS320C54x family of signal proces-
sors [14]. Table 4.2 shows the CPU clock cycles taken to realize the modular multi-
plication on 'C54x signal processor, while Table 4.1 lists the CPU clock cycles taken
to process the traditional RSA decryption method, the method based on CRT, and
our method, respectively. In addition, we assume the calculated CPU clock cycles for
the realization of the RSA decryption with the following parameters: RSA modulus
n = 1024 bits, RSA exponent length = 1024 bits, message length = 1024 bits, level-1
prime length = 512 bits, and level-2 large prime length = 256 bits. We compute
the modular exponentiation with the square and multiply algorithm [9], which needs
3n/2 modular multiplications for an n-bit exponent. It may be presumed that the
computational time is about one modular multiplication for the traditional method,
and about two modular multiplications for the CRT-based method.

388 AN EFFICIENT MODULO p MULTIPLICATION ALGORITHM

TABLE 4.2. Numbers of CPU clock cycles for realizing the modular multiplication

a (bit) | b (bit) | n (bit) | 7= (axb) mod (n) (clock cycles)
128 128 128 3692
256 256 256 8566
512 512 512 22888
1024 1024 1024 70038

The results are listed in Table 4.1, which show that the method utilizing our
proposed algorithm takes only 15% of the computational time taken by the 1024-
bit RSA traditional method, and that even the method based on the CRT must
take 30% of the same computational time. In other words, the method utilizing
our proposed algorithm needs only 52% of the computational cost needed by the
decryption method based on the CRT. It is noteworthy that the proposed modular
multiplication algorithm can significantly improve the decryption performance, giving
it an increase of 82% from the speed of the traditional method and an increase of 44%
from the speed of the CRT method by Texas Instruments TMS320C54x simulation.
That is to say, the method utilizing our proposed algorithm is almost 2 times faster
than the decryption method based on the CRT.

5. Conclusions

This paper proposes an efficient modular multiplication algorithm. The proposed
algorithm is based on the idea that the remainder for modulus p can be generated
from the remainder with modulus p—1 and the remainder with modulus p+1. The
proposed algorithm greatly enhances the performance of RSA decryption, in addition
to reducing the computational time of RSA encryption. The computational perfor-
mance analysis shows that the 1024-bit RSA decryption utilizing our proposed method
takes only 15% of the computational time that the traditional method needs, while
the decryption method based on the CRT must take 30% of the same computational
time. In evaluating the performance of our method, we examine all three methods
with Texas Instruments TMS320C54x family of signal processors. The result shows
an increase of 82% from the speed of the traditional method and an increase of 44%
from the speed of the CRT-based method. In a word, RSA decryption utilizing our
proposed method runs almost 2 times faster than the CRT-based one.

Acknowledgement. This work was partially supported by the iCAST project
sponsored by the National Science Council, Taiwan, under the Grants No. NSC95-
3114-P-001-001-Y02.

REFERENCES

[1] R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signature and public-key
cryptosystems, Commun. of ACM, 21(2), 120-126, 1978.

[2] A. Hayashi, A new fast modular multiplication method and its application to modular
ezponentiation-based cryptography, Electronics and Communications in Japan, 83(12), 88-
93, 2000.

[3] ANSI Standard X9.31, Digital signatures using reversible public key cryptography for the fi-
nancial services industry (rDSA), 1998.

[4] C.-S. Lai, W.-C. Yang and C.-H. Chen, Efficient method for generating strong primes with
constraint of bit length, Electronics Letters, 27(20), 1807-1808, 1991.

[5] J. Gordon, Strong RSA keys, Electronics Letters, 20(12), 514-516, 1984.

[10]
[11]
(12]
(13]

[14]

REN-JUNN HWANG, FENG-FU SU AND SHENG-HUA SHIAU 389

L. Batina, S. B. Ors, B. Preneel and J. Vandewalle, Hardware architectures for public key
cryptography, Integration VLSI Journal, 34, 1-64, 2003.

M. J. Ganley, Note on the generation of Py for RSA keysets, Electronics Letters, 26(6), 369,
1990.

R. D. Diaz and J. M. Masqu, Optimal strong primes, Information Processing Letters, 93, 47-52,
2005.

D. E. Knuth, Seminumerical Algorithms, Volume 2 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, USA, 1997.

C. K. Koc, High-speed RSA implementation, Version 2.0, RSA Laboratories, Nonmember,
1994.

M. Ogiwara, A method for generating cryptographically strong primes, IEICE Trans. Funda-
mentals, E73, 6, 985-994, 1990.

Davida GI, Wells DL and Kam JB, A database encryption system with subkeys, ACM Trans.
Database Systems, 6, 312-328, 1981.

M. S. Hwang, Dynamic participation in a secure conference scheme for mobile communications,
IEEE Trans. Vehicular Technology, 48(5), 1469-1474, 1999.

G. Doroevié¢, T. Unkasevi¢ and M. Markocié¢, Optimization of modular reduction procedure in
RSA algorithm implementation on assembler of TMS320C54x signal processors, in Proc.
of the IEEE 14th International Conference on Digital Signal Processing, 811-814, 2002.

